

NBU-003-1261001 Seat No.

M. Phil. (Science) (Sem. I) (CBCS) Examination

April / May - 2017

Mathematics: CMT-10001

(Algebra) (New Course)

Faculty Code: 003

Subject Code: 1261001

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) Answer all the questions.

- (2) Each question carries 14 marks.
- (3) The rings considered here are commutative with identify.
- 1 Answer: (any seven)

 $7 \times 2 = 14$

- (a) Define a prime ideal of a ring. Verify that $35\mathbb{Z}$ is not a prime ideal of \mathbb{Z} .
- (b) When is an ideal of a ring said to be finitely generated?
- (c) Define an Artinian ring.
- (d) Define a multiplicatively closed subset of a ring and illustrate it with an example
- (e) Define:
 - (i) nilradical of a ring and
 - (ii) Jacobson radical of a ring.
- (f) Define a primary ideal of a ring.
- (g) Prove that $2+i\sqrt{7}$ is integral over \mathbb{Z} .
- (h) State going-up theorem.
- (i) Define a valuation ring of a field K. Verify that $\mathbb{Z}_{5\mathbb{Z}}$ is a valuation ring of \mathbb{Q} .
- (j) State the second uniqueness theorem for decomposable submodules of a module M over a ring R.

2 Answer any two:

 $2 \times 7 = 14$

- (a) Let I be an ideal of a ring R such that $I \neq R$. Show that there exists a maximal ideal m of R such that $I \subseteq m$.
- (b) State and prove Nakayana's lemma.
- (c) Let I be an ideal of a ring R. Let C be the collection of all prime ideals p of R such that $p \supseteq I$. Show that $\sqrt{I} = \bigcap_{p \in CP}$.
- 3 (a) Let $f: R \to T$ be a homomorphism of rings. Let I_1, I_2 5 be ideals of R. Prove:
 - (i) $(I_1 + I_2)^e = I_1^e + I_2^e$ and
 - (ii) $(I_1 \cap I_2)^e \subseteq I_1^e \cap I_2^e$.
 - (b) Let M be a module over a ring R. If $M_m = (0)$ for each maximal ideal m of R, then show that M = (0).
 - (C) Let R be an Artinian integral domain. Prove that R is a field.

OR

- 3 (a) Let $N \subseteq K$ be submodules of a module M over a fing R. Prove that $(M/N)(K/N) \cong M/K$ as R-modules.
 - (b) Show that the homomorphic image of a Noetherian 5 ring is Noetherian.
 - (c) Let I be an ideal of a ring R such that $\sqrt{I} = m$ is a **4** maximal ideal of R. Prove that I is m-primary.

4 Answer any two:

 $2 \times 7 = 14$

- (a) Prove that first uniqueness theorem on decomposable submodules of a module M over a ring R.
- (b) Let S be a multiplicatively closed subset of a ring R. Let $C = \{p : p \text{ is a prime ideal of } R \text{ such that } p \cap S = \theta\}$. Let D be the collection of all prime ideals of $S^{-1}R$. Show that there is a bijection from C onto D.
- (c) Let R be a subring of a ring T. Let $t \in T$. Suppose that there exists a faithful R[t]-module M such that M is a finitely generated R-module. Prove that t is integral over R.

5 Answer any two:

 $2 \times 7 = 14$

- (a) Let R be a Noetherian ring. Prove that the nilradical of R is nilpotent.
- (b) Let S be a multiplicatively closed subset of a ring R. Let $g:R\to T$ be a ring homomorphism such that g(s) is a unit in T for all $s\in S$. Show that there exists a unique ring homomorphism $h:S^{-1}R\to T$ such that h(r/1)=g(r) for all $r\in R$.
- (c) Let $I=q_1\cap\ldots\cap q_n$ be an irredundant primary decomposition of an ideal I of a ring R, where q_i is a p_i primary ideal of R for each $i\in\{1,\ldots,n\}$ Prove that $Z_R(R/I)=\bigcup_{i=1}^n p_i$.
- (d) Let R be a subring of a ring T such that T is integral over R. Let $p_1 \subseteq p_2$ be prime ideals of T such that $p_1 \cap R = p_2 \cap R$. Show that $p_1 = p_2$.